Digilab FTS-15 FT-IR spectrum of synthetic isocvcloseychellene. We also graciously thank Professor M. R. Willcott (University of Houston) and Dr. R. R. Inners (University of South Carolina) for their help with the 400-MHz NMR spectra of natural cycloseychellene and synthetic isocycloseychellene. J.-M.A. expresses his thanks for the Lynn Murray (1982-83) and Stella Ehrhardt Memorial (1984–85) Fellowships.

Total Syntheses of (\pm) -Seychellene and (\pm) -Cycloseychellene

Steven C. Welch,* John M. Gruber, and Paul A. Morrison

Department of Chemistry, University of Houston-University Park, Houston, Texas 77004

Received December 11, 1984

Total syntheses of (\pm) -seychellene (1) and (\pm) -cycloseychellene (2) are presented. The key step in these syntheses is the construction of tricyclic alcohols 13 by concomitant oxidative cyclization of diol 12.

Both the tricyclic sesquiterpene seychellene (1) (Scheme I) and the tetracyclic hydrocarbon cycloseychellene (2) were isolated from Patchouli oil (Pogostemon cablin Benth.)^{1,2} In the previous papers in this series we reported a structural revision for natural product 2.3 This structural assignment has been confirmed by Yamada and coworker's recent total synthesis of (\pm) -cycloseychellene (2).⁴ Several successful total syntheses of seychellene (1) have been reported.⁵ We now present, herein, the full details of our total syntheses of (\pm) -seychellene (1) and (\pm) cycloseychellene (2) via a common tricyclic intermediate.⁵

The syntheses of sesquiterpenes 1 and 2 begin with 2.5-dimethylcyclohexanone (3, Scheme II). Treatment of ketone 3 with sodium hydride and ethyl formate in tetrahydrofuran followed by acidification gives a hydroxymethylene ketone. A Michael reaction of the latter substance with methyl vinyl ketone (MVK) in the presence of triethylamine followed by decarbonylation with 7.2 equiv of potassium carbonate in dilute aqueous ethanol affords diketones 4 in 81% overall yield from ketone 3. Cyclization of diketone 4 to bicyclic ketones 5A ($R^1 = H, R^2 = CH_3$) and 5E ($R^1 = CH_3$, $R^2 = H$) was accomplished with 5.5 equiv of boron trifluoride in dichloromethane under conditions of high dilution (1.0 g of 4/1.5 L of CH₂Cl₂, $3.4 \times$ 10⁻³ M) at 0 °C for 2 h followed by 23 °C for 26 h. Under these conditions ketones 5A and 5E are produced in 83% yield as a 36:64 ratio of axial-CH₃ ($R^1 = H, R^2 = CH_3$): equatorial-CH₃ ($R^1 = CH_3$, $R^2 = H$) isomers, respectively.

(1) (a) Tsubaki, N.; Nishimura, K.; Hirose, Y. Bull. Soc. Chem. Jpn. 1967, 40, 597. (b) Wolff, G.; Ourisson, G. Tetrahedron 1969, 25, 4903.

(4) Niwa, H.; Ban, N.; Yamada, K. Tetrahedron Lett. 1983, 24, 937.

 (5) (a) Piers, E.; De Waal, W.; Britton, R. W. J. Am. Chem. Soc. 1971
 93, 5113. (b) Mirrington, R. N.; Schmalzl, K. J. J. Org. Chem. 1972, 37 2877. (c) Fukamiya, N.; Kato, M.; Yoshikoshi, A. J. Chem. Soc., Perkin Trans. 1973, 1843. (d) Fráter, G. Helv. Chim. Acta 1974, 57, 172. (e) Irans. 1913, 1943. (a) Frater, G. Heib. Chim. Acta 1974, 57, 172. (e)
 Spitzner, D. Tetrahedron Lett. 1978, 3349. (f) Jung, M. E.; McCombs, C. A. J. Am. Chem. Soc. 1978, 100, 5207, (g) Yamada, K.; Kyotani, Y.; Manabe, S.; Suzuki, M. Tetrahedron 1979, 35, 293. (h) Jung, M. E.; Pan, Y.-G. Tetrahedron Lett. 1980, 3127. (i) Welch, S. C.; Gruber, J. M.; Chou, C.-Y.; Willcott, M. R.; Inners, R. J. Org. Chem. 1981, 46, 4816. (j) Jung, M. E.; McCombs, C. A.; Takeda, Y.; Pan, Y.-G. J. Am. Chem. Soc. 1981, 103, 6677. (k) Welch, S. C.; Gruber, J. M.; Morrison, P. A. Tetrahedron Lett. 1984, 25 5497. Lett. 1984, 25, 5497.

Scheme I 1 2

Scheme II. Synthesis of Bicyclic Ketone 5E^a

^a (a) NaH, HCO₂Et, THF; (b) H_3O^+ ; (c) MVK, Et_3N ; (d) 7.2 equiv of K_2CO_3 , EtOH, H_2O , Δ , concentration 0.14 M; (e) 5.5 equiv of BF₃, CH₂Cl₂, concentration 3.4 × 10⁻³ M, 76 h; (f) L-Selectride, THF; -78 °C to 0 °C; (g) H_2O_2 , OH^- ; (h) H_2CrO_4 , acetone.

These conditions represent a dramatic improvement over those used by Corey and Nozoe in the initial stages of their classic and elegant synthesis of (\pm) -helminthosporal.⁶ Reduction of ketones 5AE with L-Selectride (Aldrich) $[Li(sec-Bu)_3H]$ in tetrahydrofuran from -78 °C to 0 °C and followed by a basic hydrogen peroxide workup affords three easily separable isomeric alcohols $6AA [R^1 = H, R^2]$ = CH_3 , $X^1 = H$, $X^2 = OH$; 31.4% yield], 6EA [$R^1 = CH_3$, $R^2 = H, X^1 = H, X^2 = OH; 34.9\%$ yield], and **6EE** [$R^1 = CH_3, R^2 = H, X^1 = OH, X^2 = H; 21.6\%$ yield].⁷ The stereochemistry of each isomer was established by analysis

⁽⁶⁾ Corey, E. J.; Nozoe, S. J. Am. Chem. Soc. 1965, 87, 5728.

⁽⁷⁾ Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159. Krishnamurthy, S.; Brown, H. C. Ibid. 1976, 98, 3383.

Scheme III. Synthesis of Bicyclic Alcohol 9A^a

^a (a) $Ph_3P=CHOMe$, Me_2SO ; (b) 35% $HClO_4$, THF, 1 h, 23 °C; (c) Ph_3CK , DME, Me_2SO (cat.); (d) $BrCH_2CH=CH_2$; (e) $PhCH_3$, Δ , 26 h; (f) $LiAlH_4$, Et_2O , 0 °C.

of the europium-induced NMR chemical shifts for the secondary-methyl group in each alcohol 6AA, 6EA, and 6EE.⁸ The magnitudes for these three europium-induced NMR shift experiments are quite different. Listed in Scheme II are the slopes for each NMR shift analysis of alcohols 6AA, 6EA, and 6EE together with the distance of the secondary-methyl group to the hydroxyl group in each isomer.⁸ The slopes for the europium-induced chemical shifts of all three secondary methyl groups in 6AA, 6EA, and 6EE are inversely proportional to the distance of each methyl group from the europiumcoordinated hydroxyl substituent. These europium-induced NMR shift experiments are consistent with the stereochemical assignments for 6AA, 6EA, and 6EE. Chromic acid oxidation of alcohol 6AA in acetone gives ketone 5A (δ 0.93, d, J = 7 Hz, axial CH₃CH) in 87% vield.⁹ Chromic acid oxidation of 6EA and/or 6EE in acetone affords ketone 5E (δ 0.98, d, J = 6.3 Hz, equatorial CH_3CH) in 83% yield.⁹

Scheme III details the stereoselective construction of alcohol 9A. A Wittig reaction on ketone 5E with (methoxymethylene)triphenylphosphorane in anhydrous dimethyl sulfoxide produces vinyl ethers 7 in 89% yield.¹⁰ Hydrolysis of vinyl ethers 7 with 35% aqueous perchloric acid in tetrahydrofuran for 1 h at 23 °C gives aldehydes 8 in quantitative yield. Alkylation of aldehydes 8 by generating the enolate anion with potassium triphenylmethanide in 1,2-dimethoxyethane coating a small amount of dimethyl sulfoxide at 23 °C followed by quenching with Scheme IV. Syntheses of (\pm) -Seychellene (1) and (\pm) -Cycloseychellene (2)^a

^a (a) OsO₄ (cat.); 1.5-1.66 equiv of NMMO, H_2O , THF; (b) NaHSO₃; (c) acetone, CaSO₄, MgSO₄, HCl gas (cat.); (d) *n*-BuLi, THF, TMEDA; (e) ClPO(NMe₂)₂; (f) Li, EtNH₂, Et₂O, *t*-BuOH; (g) 10% HCl, MeOH; (h) 6.3 equiv of NaIO₄, H₂O, THF, 23 °C, 13 h; (i) H₂CrO₄, acetone; (j) NaBH₄, MeOH, -15 °C to 23 °C, ref 4; (k) N₂H₄· H₂SO₄, KOH, DEG, Δ , 4 h; (l) ref 4.

allyl bromide at 23 °C for 24 h produces a 55:45 ratio of O-:C-alkylated products. After workup this mixture was then heated at reflux in toluene for 26 h in order to promote the Claisen rearrangement of the O-alkylated intermediate to the desired C-alkylated product.¹¹ Finally, reduction of this latter alkylated aldehyde product with lithium aluminum hydride in diethyl ether at 0 °C produces after chromatographic separation alcohols 9A and 9E in 61% and 9% overall yields (87:13 ratio), respectively. Formation of the axial aldehyde precursor of alcohol 9A as the major diastereomer was expected on the basis of stereochemical precedent report by House and co-workers.¹¹ The Claisen rearrangement is expected to occur with the carbon-carbon bond-forming process taking place from the less hindered equatorial direction at carbon-9. Raphael and co-workers have shown that in bicvclo[3.3.1]nonene ring systems the direction of less hindered approach at carbon-9 is from the side of alkene bridge.¹²

Scheme IV displays the completion of the syntheses of (\pm) -seychellene (1) and (\pm) -cycloseychellene (2). Several attempts were made to deoxygenate alcohol 9A to a diene by Brown's Superhydride¹³ and Ireland's phosphoramidate¹⁴ reduction methodologies; however, these routes proved to be totally unsuccessful. However, selective oxidation of the monosubstituted alkene of alcohol 9A under

^{(8) (}a) Hinckley, C. C. J. Am. Chem. Soc. 1969, 91, 5160. (b) Demarco, P. V.; Elzey, J. K; Lewis, R. B.; Wenkert, E. Ibid. 1970, 92, 5734. The slopes for each 2°-CH₃ group in 6AA, 6EA, and 6EE were calculated from a plot of $\Delta \delta_{M_6}$ vs. $\Delta [Eu(DPM)_2/[ROH]$. The distances between the 2°-CH₃ and the OH group in each isomer were measured by using Dreiding stereomodels. (9) (a) Eisenbraun, E. J. "Organic Syntheses"; Wiley: New York, 1973;

 ^{(9) (}a) Eisenbraun, E. J. "Organic Syntheses"; Wiley: New York, 1973;
 Collect. Vol. V, p 310. (b) Djerassi, C.; Engle, R. R.; Bauers, A. J. Org. Chem. 1956, 21, 1547.

 ^{(10) (}a) Levine, S. G. J. Am. Chem. Soc. 1958, 80, 6150. (b) Wittig,
 G.; Krauss, E. Angew. Chem. 1959, 71, 127. (c) Maercker, A. Org. React.
 (N.Y.) 1965, 14, 270.

⁽¹¹⁾ House, H. O.; Lubinkowski, J.; Good, J. J. J. Org. Chem. 1975, 40, 86.

^{(12) (}a) Martin, J.; Parker, W.; Raphael, R. A. J. Chem. Soc. C 1971, 348; (b) J. Chem. Soc. 1964, 289.

⁽¹³⁾ Krishnamurthy, S.; Brown, H. C. J. Org. Chem. 1976, 41, 3064; 1983, 48, 3085. Failure of this method was very surprising since a similar reduction of the tosylate ether of alcohol 18 in ref 3a proceeds in 50% yield.

^{(14) (}a) Ireland, R. E.; Muchmore, D. C.; Hengartner, U. J. Am. Chem. Soc. 1972, 94, 5098. Lithium in ethylamine or methylamine reduction of an intermediate phosphoramidate ester of alcohol 9A at 0-16 °C resulted in the concomitant reduction of the monosubstituted alkene moiety.

Van Rheenan's conditions was successful.¹⁵ Treatment of alcohol 9A with a catalytic amount of osmium tetroxide and 1.15-1.66 equiv of 4-methylmorpholine N-oxide (NMMO) in aqueous tetrahydrofuran gives triol 10 in 65% as a mixture of diastereomers.¹⁵ The glycol portion of triol 10 was protected as an acetonide. A solution of triol 10 in acetone in the presence of anhydrous calcium sulfate (Drierite 8-mesh)-magnesium sulfate (powdered) and a catalytic amount of hydrogen chloride gas as 23 °C for 22 h produces a mixture intermediate acetonides.¹⁶ Esterification of the primary alcohol groups was accomplished with n-butyllithium in tetramethylethylenediamine-tetrahydrofuran followed by bis(dimethylamino)phosphorochloridate.¹⁴ Reduction of these phosphoramidate esters with lithium metal in ethylamine-ether-tert-butyl alcohol followed by acid-catalyzed methanolysis of the acetonide protecting groups affords after chromatography on silica gel alcohol 11 and glycol 12 in 20% and 58% yields, respectively.¹⁴ Apparently alcohol 11 arises from a sevenmembered-ring acetonide from glycol 10 and glycol 12 comes from the corresponding five-membered-ring acetonide. Experiments aimed at kinetic and selective formation of the five-membered-ring acetonide with zinc chloride were unsuccessful at 0 °C to 23 °C. The five-memberedring acetonide does form faster than the seven-membered-ring acetonide as indicated by TLC (silica gel); however, by the time all the starting triol 10 is consumed, there is significant equilibration between the two acetonides. Glycol 12 on oxidation with 6.3 equiv of sodium metaperiodate in aqueous tetrahydrofuran for 13 h spontaneously and serendipitously undergoes concomitant oxidative cleavage and intramolecular Prins (ene) reaction to produce tricyclic alcohols 13 in 77% yield as a 3:1 mixture of diastereomers.⁷ Examination of a Dreiding stereomodel of the intermediate aldehyde reveals the fact that the trisubstituted alkene and aldehyde moieties are stereochemically perfectly situated for a very facile in-tramolecular ene process.¹⁸ Yamada and co-workers have prepared (±)-cycloseychellene (2) from alcohols 13 (prepared by sodium borohydride reduction of ketone 14 in quantitative yield) via a four-step sequence of reactions.⁴ Thus our synthesis of alcohols 13 represent another total synthesis of (\pm) -cycloseychellene (2). Chromic acid oxidation of alcohols 13 in acetone affords crystalline tricyclic ketone 14 in quantitative yield.⁹ Our ketone 14 was found to be identical with that prepared by Yamada and coworkers with respect to IR and NMR spectra.⁴ Finally Wolff-Kishner reduction of ketone 12 with hydrazine sulfate and potassium hydroxide in diethylene glycol at 200 °C for 4 h gives (\pm)-seychellene (1) in 73% yield.¹⁹ Synthetic seychellene was found to be identical with a sample of the natural product with respect to GC-MS, IR, NMR (¹H and ¹³C), and GLC.⁵

Experimental Section

Materials and Techniques.²⁰ 3,6-Dimthyl-2-(3-oxobutyl)cyclohexanone (4). Sodium hydride (70% w/w as an oil

(16) (a) Sinder, D. D. Acc. Chem. Acs. 1360, 16, 420. (b) Oppolet, W.,
 Snieckus, V. Angew, Chem., Int. Ed. Engl., 1978, 17, 476. (c) Marshall,
 J. A.; Anderson, N. H.; Johnson, P. C. J. Org. Chem. 1970, 35, 186.
 (19) (a) Todd, D. Org. React. (N.Y.) 1948, 4, 378. (b) Mukawa, F.;
 Nagata, W. Bull. Chem. Soc. Jpn. 1972, 45, 574.

(20) Please refer to the Materials and Techniques portion of the previous paper in this issue, ref 3a.

dispersion, 70.8 g, 2.05 mol) was washed with dry THF $(3 \times 50$ mL) and then suspended in dry THF (1.5 L) This suspension was cooled to 0 °C under N2 and ethyl formate (500 mL, 6.20 mol) was added dropwise. Then ketone 3 (64.6 g, 0.512 mol) dissolved in dry THF (50 mL) was added dropwise. One hour after the ketone addition was completed, the reaction was allowed to warm to 23 °C and to stir for an additional 24 h. At this point the reaction mixture was poured into a mixture of saturated NH₄Cl solution (1250 mL), 10% HCl (500 mL), and ice (750 g). This mixture was divided in half and each half was extracted with Et₂O $(4 \times 300 \text{ mL})$. Each set of ethereal extracts was then washed with saturated NaCl solution $(2 \times 500 \text{ mL})$. The organic material was concentrated in vacuo and distilled (bulb-to-bulb) to afford 75.2 g (95%) of hydroxymethylene ketone: bp 50-55 °C (0.1 mmHg); NMR (CCl₄) δ 1.10 (d, 3, J = 3 Hz, CH-CH₃), 1.16 (d, 3, J = 3Hz, CH_3CH), 1.3–2.8 (br m, 6), 8.7 (s, C=CHOH). This material was used immediately in the next step without further purification. Dry Et₃N (35 mL, 0.25 mmol) was added to a stirred mixture of hydroxymethylene ketone (23.1 g, 148 mmol) and freshly distilled methyl vinyl ketone (40 mL, 0.493 mmol) at 0 °C under N₂. The resulting yellow solution was stirred at 0 °C for 1 h. It was then stirred at 23 °C for 3 days. The excess Et₃N and MVK were removed in vacuo and the residue was dissolved in Et_2O (250 mL). This ethereal solution was washed with 10% HCl (100 mL), 5% NaOH (100 mL), H₂O (25 mL), and saturated NaCl solution (25 mL), dried (MgSO₄), filtered (MgSO₄), and concentrated in vacuo to give 34.0 g (101%) of yellow liquid. This liquid was dissolved in a solution of 95% EtOH (1.0 L), H_2O (75 mL), and K_2CO_3 (2.82 g, 20.5 mmol). This solution was heated at reflux for 20 h under N₂. The EtOH was removed in vacuo andd the residue was extracted with Et_2O (3 × 100 mL). The combined ethereal extracts were washed with water (50 mL) and saturated NaCl solution (50 mL), dried (MgSO₄), filtered (MgSO₄), and concentated in vacuo to give 28.8 g (98.0%) of crude diketone. Distillation (bulb-to-bulb) gave 24.9 g (84.8%) of diketone 4: bp 110-120 °C (1.0 mmHg); IR (CCl₄) 2950, 2920, 2860, 1720 (C=O), 1710 (C=O) cm⁻¹; NMR $(CDCl_3) \delta 0.90$ (d, 3, J = 6 Hz, CH_3CH), 1.00 (d, 3, J = 6 Hz, CH_3CH , 1.15–2.60 (br m, 11), 2.12 (s, 3, CH_3CO). Anal. Calcd for C₁₂H₂₀O₂: C, 73.43; H, 10.27. Found: C, 72.98; H, 10.16.

1,2,6-Trimethylbicyclo[3.3.1]non-2-en-9-one (5AE). A solution of diketone 4 (1.01 g, 5.13 mmol) in dry CH_2Cl_2 (1.5 L) was cooled to 0 °C under N_2 , and then BF_3 (1.90 g, 28.0 mmol) was slowly bubbled (gas dispersion tube) into the rapidly stirred solution at 0 °C. The resulting reddish orange solution was stirred at 0 °C for 2 h. The reaction was then allowed to warm to 23 °C. After 26 h at 23 °C, GLC analysis (column a) indicated that 10%of the starting diketone remained, so additional BF_3 (0.01 g, 0.15 mmol) was added. The reaction was allowed to continue stirring at 23 °C for 48 h. At that time GLC monitoring (column a) indicated <5% of starting diketone remaining. The reaction mixture was poured onto a mixture of ice (30 g) and 10% NaOH solution (30 mL). After separation, the aqueous phase was extracted with CH_2Cl_2 (2 × 50 mL) and the combined organic solutions were washed with H_2O (200 mL) and dried (MgSO₄), and the solvent was removed in vacuo. Distillation (bulb-to-bulb) provided 0.76 g (82.7%) of the bicycloketone 5AE: bp 65-70 °C (0.5 mmHg); IR (CCl₄) 3020 (C=CH), 2960, 2920, 1715 (C=O), 1670 (C=C) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.91 (d, 0.4, J = 7 Hz)8 0.98 (d, 0.6, J = 6 Hz), 1.07 (s, 1.8, CH₃), 1.08 (s, 1.2, CH₃), 5.59 (brs, 1, C=CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 122.99 (C=CH, axial isomer), 123.75 (C=CH, equatorial isomer), 136.38 (C=C), 216.09 (C=O). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.17. Found: C, 80.80; H, 10.20.

(1α,5α,6α,9S*)-1,2,6-Trimethylbicyclo[3.3.1]non-2-en-9-ol (6AA), (1α,5α,6β,9S*)-1,2,6-Trimethylbicyclo[3.3.1]non-2en-9-ol (6EA), and $(1\alpha, 5\alpha, 6\beta, 9R^*)$ -1,2,6-Trimethylbicyclo-[3.3.1]non-2-en-9-ol (6EE). Ketone 5AE (7.83 g, 43.8 mmol) was dissolved in THF (50 mL) under N_2 and cooled to -78 °C (dry ice/acetone). L-Selectride (48.3 mL, 48.3 mmol, 1 M) was added to the solution dropwise over a period of 20 min. The resulting yellow solution was stirred at -78 °C for 1 h and then at 0 °C (ice bath) for 2 h. Another portion of L-Selectride (50 mL, 50 mmol) was added and the reaction was stirred for one additional hour at 0 °C. The reaction was quenched by the dropwise addition of 10% NaOH (100 mL) and 30% H₂O₂ (60 mL) at 0 °C. After 20 min this mixture was partitioned with Et₂O (100 mL). The

⁽¹⁵⁾ Van Rheenan, V.; Cha, D. Y.; Hartley, W. M. Org. Synth. (N.Y.) 1978, 58, 44.

^{(16) (}a) Lewhart, M. L.; Schneider, J. J. J. Org. Chem. 1969, 34, 3505.
(b) Clode, D. M. Chem. Rev. 1979, 79, 491.
(17) (a) France, D. J.; Hand, J. J.; Los, M. J. Org. Chem. 1970, 35, 468.
(b) Jackson, E. L. Org. React. (N.Y.) 1944, 2, 341.
(18) (a) Snider, B. B. Acc. Chem. Res. 1980, 13, 426. (b) Oppolzer, W.;

aqueous portion was then extracted with Et₂O (4 × 25 mL). The combined ethereal extracts were washed with H₂O (4 × 50 mL), saturated NaCl solution (50 mL), and dried (MgSO₄). The excess sec-BuOH was removed by azetropic distillation with C₆H₆ (3 × 25 mL). Concentration in vauco gave 6.95 g of crude alcohols 6AA, 6AE, and 6EE. Medium pressure liquid chromatography (MPLC)²⁰ on silica gel using ether-petroleum ether (10:90, respectively) as eluant afforded 6AA, 6AE, and 6EE in the ratio 35.7:39.7:24.6 with a combined yield of 87.9%.

6AA: IR (CCl₄) 3640, 3500 (OH), 3025 (C—C), 2960, 2930, 2875, 1450, 1065, 1060, 1035 (C—O) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 1.04 (s, 3, CH₃), 1.18 (d, 3, J = 7 Hz, CHCH₃), 3.63 (d, 1, J = 2 Hz, CHOH), 5.41 (m, 1, C—CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 18.65, 21.88, 22.47, 22.68, 23.48, 25.87, 34.57, 34.85, 39.26, 40.03, 75.87 (COH), 122.55 (C—CH), 136.76 (C—CH); mass spectrum, m/e (relative intensity) 180 (M⁺, 7), 43 (56), 41 (100), 39 (70), 28 (100); high-resolution mass spectroscopy (m/z) calcd for C₁₂H₂₀O 180.1514; found 180.1514; 0.0 ppm error.

6EA: IR (CCl₄) 3630, 3490 (OH), 3030 (C=CH), 2960, 2925, 1460, 1070, 1050, 1025, 1010 (C-O) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.87 (d, 3, J = 6.6 Hz, CHCH₃), 1.04 (s, 3, CH₃), 1.58 (m, 3, CH₃C=C), 3.66 (d, 1, J = 2 Hz, CHOH), 5.40 (m, 1, C=CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 18.63, 19.06, 21.67, 25.60, 27.71, 28.34, 29.46, 38.70, 39.82, 75.45 (COH), 123.31 C=CH), 136.64 C=CH). Anal. Calcd for C₁₂H₂₀O: C, 79.94; H, 11.18. Found: C, 80.03; H, 11.29.

6EE: IR (CCl₄) 3630, 3580, 3470 (OH), 2950, 2920, 2850, 1450, 1090, 1075, 1055, 1030, 1015 (C—O) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.90 (d, 3, J = 6.5 Hz, CHCH₃), 1.10 (s, 3, CH₃), 3.31 (d, 1, J = 2 Hz, CHOH), 5.58 (m, 1, C=CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 19.06, 19.28, 21.76, 22.76, 27.11, 36.01, 36.24, 39.60, 40.44, 78.58 (COH), 123.90 nC=CH), 134.49 (C=CH). Anal. Calcd for C₁₂H₂₀O: C, 79.94; H, 11.18. Found: C, 80.01; H, 11.25.

 $(1\alpha,5\alpha,6\alpha)$ -1,2,6-Trimethylbicyclo[3.3.1]non-2-en-9-one (5A). Alcohol 6AA (2.48 g, 13.8 mmol) was dissolved in reagent-grade acetone (100 mL) and cooled at 0 °C. Chromic acid reagent⁹ (2.67 M, 3.7 mL, 9.88 mmol) was added dropwise. After the addition was completed the reaction was allowed to warm to 23 °C for 20 min. The reaction was quwnched with i-PrOH (1.0 mL). Water (200 mL) was added to the reaction and the mixture was extracted with Et_2O (5 × 25 mL). The combined organic solutions were washed with saturated NaCl solution (50 mL), dried (MgSO₄), and concentrated in vacuo. Distillation (bulb-to-bulb) gave 2.14 g (87.2%) of 5A: bp 66-70 °C (1.0 mmHg); IR (CCl₄) 3030 (C=CH), 2960, 2930, 2880, 2850, 2830, 1720 (C=O) cm⁻¹; ¹H NMR $(\text{CDCl}_3, 80 \text{ MHz}) \delta 0.93 \text{ (d, } 3, J = 7 \text{ Hz}, \text{CHCH}_3), 1.09 \text{ (s, } 3, \text{CH}_3),$ 1.61 (m, 3, C=CCH₃), 5.56 (m, 1, C=CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 18.23, 18.56, 18.83, 24.58, 33.91, 35.62, 40.94, 49.30, 51.09, 123.10 (C=CH), 136.39 (C=CH)8 224.17 (C=O). Anal. Calcd for C₁₂H₁₈O: C, 80.85; H, 10.18. Found: C, 80.84; H, 10.15.

 $(1\alpha.5\alpha.6\beta)$ -1.2.6-Trimethylbicyclo[3.3.1]non-2-en-9-one (5E). To a stirred solution of alcohols 6EA and 6EE (2.44 g, 13.6 mmol) in reagent-grade acetone (35 mL) at 0 °C was added chromic acid reagent⁹ (2.68 M, 3.4 mL, 9.11 mmol) dropwise. An additional quantity of the H₂CrO₄ reagent (0.4 mL, 1.07 mmol) was added to maintain a orange-red color in the reaction for 20 min. The reaction was then quenched with i-PrOH (1.0 mL). The organic portion was decanted and the aqueous portion was diluted with H_2O (150 mL). This solution was extracted with Et_2O (2 × 50 mL). The combined organic solutions were washed with saturated NaHCO₃ solution (75 mL) and saturated NaCl solution (75 mL) and then dried $(MgSO_4)$. The solvent was removed in vacuo and distillation (bulb-to-bulb) afforded 2.02 g (83.4%) of ketone 5E: bp 50-55 °C (0.05 mmHg); IR (CCl₄) 2960, 2940, 1720 (C=O) cm⁻¹; ¹Ĥ NMR (CDCl₃, 80 MHz) δ 0.98 (d, 3, J = 6.3 Hz, CH₃CH), 1.08 $(s, 3, CH_3), 1.61 (brs, 3, C=CCH_3), 2.37 (brs, 2, CH_2C=C), 5.58$ (brs, 1, C=CH); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 17.91, 18.05, 26.70, 27.25, 38.04, 38.97, 48.07 (4°), 49.83, 123.61 C=CH), 136.19 (C==CH), 215.17 (C==O); mass spectrum, m/z (relative intensity) 178 (M⁺, 31), 107 (84), 93 (86), 41 (100), 39 (92); high-resolution mass spectroscopy (m/z) calcd for C₁₂H₁₈O 178.1358, found 178.1353; 2.8 ppm error.

9-(Methoxymethylene)-1,2,6-trimethylbicyclo[3.3.1]non-2-ene (7). Sodium hydride (70% dispersion in oil, 2.39 g, 99.7 mmol) was washed with dry Et_2O (3 × 10 mL). Dry Me₂SO (100 mL) was then added and this suspension was heated to 55 °C for

5.5 h, at which point H_2 evolution has ceased and the solution has turned dark gray. The solution was then cooled to ~ 15 °C and the Wittig salt [Ph₃PCH₂OCH₃Cl, 31.1 g, 90.7 mmol] was added under heavy N2 flow. The mixture turned a burgundy color as it warmed to 23 °C and was stirred for 20 min. The starting ketone 10 (2.02 g, 11.3 mmol) was transferred into the ylide mixture by using Me_2SO (3 × 10 mL), and additional Me_2SO (70 mL) was added to the reaction mixture. The reaction was heated to 55 °C for 12 h. The reaction was then cooled to 23 °C and diluted with H_2O (300 mL), and this mixture was extracted with Et_2O (7 × 200 mL). The combined organic material was washed with H_2O (5 × 200 mL) and saturated NaCl solution (2 × 200 mL). The mixture was dried $(MgSO_4)$ and the solvent was removed in vacuo to give a brownish oil. Distillation (bulb-to-bulb) gave vinyl ether 7 which contained some (Ph_3P) . Medium pressure liquid chromatography (MPLC)²⁰ on silica gel using 3% ethyl acetatehexane as eluant afforded 2.07 g (88.5%); bp 100 °C (8 mmHg); IR (CCl₄) 3020 (C=CH), 2955, 2925, 1720 (C=CHOMe), 1680 (C=C), 1120 (C-O) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.91 (d, 3, J = 6 Hz, CH₃CH), 1.07 (s, 3, CH₃), 1.59 (m, 3, CH₃C=C), 2.07 (m, 1, CH₂C==C), 3.45 (s, OCH₃) and 3.54 (s, OCH₃), 5.49 (bs, 1, C=CH), 5.71 and 5.75 (2 s, 1, C=CHO); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 19.06, 19.50, 21.84, 26.62, 28.28, 33.66, 37.36, 37.56, 38.97, 59.42 (OCH₃), 124.71 (C=CHO), 127.50 (C=CH), 135.85 (C = CHO), 137.75 (C=CH); mass spectrum, m/z (relative intensity) 206 (M⁺, 24), 191 (22), 159 (55), 149 (89), 119 (99), 105 (74), 91 (100); high-resolution mass spectroscopy (m/z) calcd for C₁₄H₂₂O 206.1671, found 206.1675; 1.9 ppm error.

1.2.6-Trimethylbicyclo[3.3.1]non-2-ene-9-carboxaldehyde (8). A solution of vinyl ether 7 (1.00 g, 4.85 mmol) in THF (150 mL) was treated with 35% HClO₄ (15 mL) for 1 h at 23 °C. The reaction was neutralized with saturated NaHCO₃ solution (75 mL). The aqueous layer was extracted with Et_2O (2 × 75 mL), and the combined organic solutions were dried (MgSO₄). Concentration in vacuo and distillation (bulb-to-bulb) afforded 0.935 g (99.9%) of aldehyde 8: bp 78-82 °C (1.2 mmHg); IR (CCl₄) 3015 (C=CH), 2730, 2680 (CHO), 1720 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.88 and 0.92 (2d, J = 7 Hz, and 6 Hz, CH₃CH), 1.16 and 1.20 (2 s, 3, CH₃), 5.53 (brs, 1, C=CH), 9.78 and 10.03 (2 s, CHO); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 58.01 (CCHO), 61.38 (CCHO), 65.73 (4°), 67.80 (4°), 123.93 (C=CH), 124.91 (C=CH), 135.97 (C=CH), 137.79 (C=CH), 205.71 (CHO); mass spectrum, m/z (relative intentisy) 192 (M^{+} , 3), 163 (7), 161 (5), 159 (5), 107 (76), 91 (100), 41 (76), 29 (62); high-resolution mass spectroscopy (m/z)calcd for C₁₃H₂₀O 192.1514; found 192.1513; 0.5 ppm error.

 $(1\alpha, 5\alpha, 6\beta, 9S^*)$ -1,2,6-Trimethyl-9-(2-propenyl)bicyclo-[3.3.1]non-2-ene-9-methanol (9A) and $(1\alpha, 5\alpha, 6\beta, 9R^*)$ -1,2,6-Trimethyl-9-(2-propenyl)bicyclo[3.3.1]non-2-ene-9-methanol (9E). Potassium hydride (35% dispersion in oil, 1.14 g, 28.5 mmol) was washed with dry Et_2O (4 × 10 mL) under N₂. To the KH was added Me_2SO (5 drops), and, after the H_2 evolution had ceased, Ph₃CH (6.31 g, 25.9 mmol) dissolved in dry DME (30 mL) was added. This mixture was stirred at 50 °C for 45 min, where upon it turned red. The solution was then cooled to 23 °C and a portion (16 mL, 9.74 mmol) was added to aldehyde 8 (1.73 g, 9.01 mmol) in dry DMF (20 mL) until the red color persisted. Dry allyl bromide (3.9 mL, 45.0 mmol) was added to the reaction and this mixture was stirred at 23 °C for 24 h. The reaction mixture was poured into a saturated NaHCO3 solution (200 mL). This mixture was extracted with Et_2O (4 × 100 mL). The organic material was then dried (MgSO₄) and concentrated in vacuo to afford a mixture of C- and O-alkylated products: ¹H NMR (CDCl₃, 80 MHz) δ 2.35 (brd, 2, J = 8 Hz, OHCCCH₂CH=CH₂), 4.16 (d, 2, J = 5 Hz, C=CHOCH₂CH=CH₂), 5.78 (s, 1, C=CHO), 9.83 (s, 1, CHO); ¹³C NMR (CDCl₃, 20.2 MHz) δ 72.4 (OCH₂CH=CH₂).

This crude residue was taken up in dry PhCH₃ (50 mL) and heated at reflux for 26 h. The PhCH₃ was removed by distillation under N₂ to afford a crude mixture of aldehydes: IR (CCl₄) 3070 (C=CH₂), 3030 (C=C, 2720 nCHO), 1720 nCHO), 1640 (CH= CH₂), 1450, 990, 915 (CH=CH₂) cm⁻¹; NMR (CDCl₃, 80 MHz) δ 0.86 (d, 3, J = 10 Hz, CH₃CH), 1.22 (s, 3, CH₃), 1.56 (m, 3, C=CCH₃), 2.36 (d, 2, J = 12 Hz, OHCCCH₂CH=CH₂), 4.90 and 5.08 (2 m, 2, CH=CH₂), 5.55 (m, 1, C=CH), 5.70 (br m, 1, C-CH=CH₂), 9.84 (s, 1, CHO); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 18.80, 18.90, 19.78, 21.73, 27.93, 32.18, 34.04, 34.81, 35.57, 40.13, 54.59 (CCHO), 118.06 (C=CH₂), 124.06 (C=CH), 133.83 (CH= CH₂), 135.14 (C=CH), 184.95 nCHO); high-resolution mass spectroscopy (m/z) calcd for C₁₆H₂₄O 232.1827, found 232.1821; 2.6 ppm error.

This mixture of aldehydes was added to a solution of LiAlH₄ (184 mg, 4.38 mmol) in dry Et₂O (30 mL) at 0 °C. The reaction was warmed to 23 °C and stirred for 2 h. It was then quenched by the addition of 10% NaOH solution (12 mL). The reaction mixture was combined with H₂O (50 mL) and extracted with Et₂O (4 × 50 mL). The combined ethereal extracts were washed with saturated NaCl solution (50 mL) and dried (MgSO₄). After concentration in vacuo, the residue was purified by medium pressure liquid chromatography (MPLC)²⁰ on silica gel using 6% ethyl acetate-hexane as the eluant to afford 1.28 g (61%) of **9A** and 0.19 g (9%) of **9E** (combined yield of 69.7%; 87.1:12.9 ratio, respectively).

9A: IR (CCl₄) 3650, 3590, 3460 (OH), 3075 (CH=CH₂), 3051 (C=CH), 1635 (CH=CH₂), 1005 (C-O), 990, 915 (CH=CH₂) cm⁻¹; ¹H NMR (CDCl₃, 80 MHz) δ 0.85 (d, 3, J = 8 Hz, CHCH₃), 0.94 (s, 3, CH₃), 1.53 (brs, 3, CH₃C=C), 3.90 (s, 2, CH₂OH), 4.95 and 5.16 (3 m, 2, CH=CH₂), 5.50 (m, 1, C=CH), 5.80–6.40 (brm, 1, CH=CH₂); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 13.91, 19.05, 20.03, 22.59, 27.32, 30.10, 31.52, 32.59, 36.30, 37.96, 43.87 (4°), 65.84 (COH), 116.42 (C=CH₂), 123.80 nC=CH), 136.34 (C=CH), 138.25 (CH=CH₂); CI mass spectrum, m/z (relative intensity)8 235 (M⁺d + 1, 9.7), 234 (4), 233 (11)8 219 (7), 217 (100), 175 (96)8 161 (82), 149 (70). Anal. Calcd for C₁₆H₂₆O: 234.1984. Found: 234.1986. 0.8 ppm error by high resolution mass spectroscopy.

9E: IR (CCl₄) 3640, 3580 (OH), 3075 (CH=CH₂), 3015 (C= CH), 1690, 1630 (C=C), 995, 910 (CH=CH₂) cm⁻¹; NMR (CCl₄, 60 MHz) δ 0.87 (d, 3, J = 6 Hz, CH₃CH), 2.30 (brd, 2, J = 8 Hz, CH₂C=C), 3.90 (brm, 2, CH₂OH), 4.30 (brm, 1, OH), 4.95 and 5.15 (3 m, 2, CH=CH₂), 5.50 (m, 1, C=CH), 5.7–6.5 (brm, 1, CH=CH₂); ¹³C NMR (CDCl₃, 25.2 MHz) ppm 16.79, 21.53, 22.02, 22.82, 28.03, 31.75, 36.64, 37.36, 37.61, 39.65, 43.88, 65.45 (COH), 116.61 (C=CH₂), 122.69 (C=CH), 133.99 (C=CH), 138.43 (C-H=CH₂); high-resolution mass spectroscopy (m/z) calcd for C₁₆H₂₆O 234.1984, found 234.1980; 1.7 ppm error.

3-[9-(Hydroxymethyl)-1,2,6-trimethylbicyclo[3.3.1]non-2en-9-y1]-1,2-propanediol (10). To a rapidly stirred two-phase mixture of 9A (784 mg, 3.34 mmol), NMMO·H₂O (0.748 g, 5.53 mmol), reagent-grade acetone (1.0 mL), and H_2O (1.0 mL) was added OsO_4/H_2O (1.0 mL, 0.016 M, 4 mg/mL, 0.016 mmol). The resulting orange-yellow reaction mixture was stirred rapidly for 26 h at 23 °C. The reaction was quenched with NaHSO₃ (0.1 g) and filtered through Celite-Florisil with Et_2O (5 × 10 mL) and H_2O (5 × 10 mL). The filtrate mixture was separated and the aqueous layer was acidified with 10% HCl (2.0 mL) and extracted with Et_2O (10 × 10 mL). Sodium chloride (1 g) was added to the aqueous layer and it was extracted with EtOAc (5×10 mL). The combined organic extracts were dried $(Na_2SO_4/MgSO_4)$ and concentrated in vacuo to give 0.836 g (93%) of crude yellow oil. Chromatography on silica gel 60 (75 g) using 50% EtOAc/hexane as the eluant gave 0.580 mg (64.6%) of pure triol 10: IR (CHCl₃) 3620, 3340 (OH), 3000 nC=CH), 1100, 1070, 1040 (C-O), 880, 865 (C=CH) cm⁻¹; NMR nCDCl₃, 80 MHz) δ 0.88 (brs, 6, 2 CH₃), 1.52 (brs, 3, CH₃C=CH), 3.1–4.2 (cm, 5, CHOH, 2 CH₂OH), 4.50 (brs, 3, 3 OH), 5.49 (brs, 1, C=CH); mass spectrum, m/z (relative intensity) 268 (M⁺, 3), 250 (21), 219 (50), 201 (53), 163 (49), 119 (100), 107 (63), 95 (55); high-resolution mass spectroscopy (m/z)calcd for C₁₆H₂₈O₃ 268.2038, found 268.2039; 0.4 ppm error.

 $(1\alpha,5\alpha,6\beta,9S^*)$ -1,2,6-Trimethyl-9-propylbicyclo[3.3.1]non-2-ene-9-methanol (11) and 3-(1,2,6,9-Tetramethylbicyclo-[3.3.1]non-2-en-9-yl)-1,2-propanediol (12). A mixture of the triol 10 (0.558 g, 2.08 mmol) in reagent acetone (8.0 mL, dried over CaSO₄/MgSO₄), Drierite (1.04 g, 8 mesh), anhydrous MgSO₄ (1.28 g, powdered) and HCl gas (1 mL) was stirred under N₂ at 23 °C for 22 h. The reaction was quenched with anhydrous Na₂CO₃ (1.04 g), filtered (MgSO₄) with Et₂O (5 × 10 mL), and concentrated in vacuo to give 597 mg (93%) of clear oil: IR (CHCl₃) 3630, 3480 (OH), 3030 (C=CH), 1235, 1160, 1075, 1070, 1050 (C=O), 880, 855 825 (C=CH) cm⁻¹; NMR (CDCl₃, 60 MHz) δ 0.87 (d, 3, J = 7 Hz, CH_3 CH), 0.94 (s, 3, CH₃), 1.44 (s, 6, 2 CH₃), 1.54 (brs, 3, CH_3 C=CH), 3.2–4.7 (m, 5, CHO, 2 CH₂O), 5.64 (brs, 1, C=CH).

To a solution of this crude ketal-alcohol (597 mg, 1.94 mmol) in dry THF (15 mL) and TMEDA (4.0 mL) containing a trace of 2,2'-bipyridine stirred at -15 °C (ice–MeOH) under N₂ was added n-BuLi/hexane (1.68 mL, 2.59 mmol, 1.55 M, Aldrich). After 15 min at -15 °C ClPO(NMe₂)₂ (0.60 mL, 4.05 mmol) was added and the resulting yellow solution was stirred at 23 °C for 22 h. The reaction was quenched with saturated NaHCO₃ solution (20 mL) and the resulting two-phase mixture was stirred rapidly for 2.5 h. The mixture was diluted with H₂O (30 mL) and extracted with Et_2O (10 × 10 mL). The combined ethereal extracts were washed with H_2O (4 × 10 mL) and saturated NaCl solution (10 mL), dried $nMg\bar{S}O_4$), filtered (MgSO₄), and concentrated in vacuo to give 856 mg (100%) of light yellow phosphoramidate ester: IR nCHCl₃) 3000 (C=CH), 1305, 1235, 1185 [OPO(NMe₂)₂], 1160, 1050 (C-O), 985, 860 (C=CH) cm⁻¹; NMR (CDCl₃, 60 MHz) δ 0.73, 0.86, 0.91, 1.00 (4 s, 6, 2 CH₃), 1.32 and 1.35 (2 s, 6, Me₂CO₂), 1.54 (brs, 3, $CH_3C=CH$), 2.58 and 2.76 (2 s, 12, 2 NMe_2), 3.2–4.73 (m, 5, CHO, 2 CH_2O), 5.66 (brs, 1, C=CH).

To a solution of this crude phosphoramidate ester (856 mg, 1.93 mmol) in Et₂O (10 mL) containing t-BuOH (0.40 mL, 4.24 mmol) was added EtNH₂ (30 mL, distilled from Na/Li metals). To this solution stirred at 0 °C was added Li metal (8.0 cm, 45 mg/cm, 360 mg, 51.9 mmol, cut in 20 pieces). The resulting light yellow heterogeneous mixture was stirred at 0 °C for 45 min and then the color turned dark blue. After stirring for an additional 1 h at 0 °C, t-BuOH (0.40 mL, 4.24 mmol) was added followed by NH_4Cl (1 g) after 15 min. When all the lithium had reacted the EtNH₂ was evaporated with the aid of a warm water bath. The residue was diluted with H_2O (50 mL) and extracted with Et_2O $(5 \times 20 \text{ mL})$. The combined ethereal extracts were washed with ice-cold 5% HCl (2×20 mL), saturated NaHCO₃ solution (20 mL), H₂O (20 mL), and saturated NaCl solution, dried (Na₂SO₄), filtered (MgSO₄), and concentrated in vacuo to give 491 mg (85.9%) of clear oil: IR nCHCl₃) 3010 (C==CH), 1245, 1160, 1060 nC—O), 860 (C—CH) cm⁻¹; NMR (CDCl₃, 60 MHz) δ 0.81 (d, 3, J = 6 Hz, CH₃CH), 0.90 (s, 6, 2 CH₃), 1.35 and 1.38 (2 s, 6, Me₂CO₂), 1.55 (brs, 3, CH₃C=CH), 3.08-4.43 (m, 3, CH₂O, CHO), 5.50 (brs, 1, C=CH).

A solution of the above crude ketal (491 mg, 1.66 mmol) in MeOH (15 mL) and 10% HCl (2.0 mL) was stirred at 24 °C for 6 h. The solution was diluted with saturated NaCl solution and extracted with Et_2O (5 × 20 mL). The combined ethereal extracts were washed with saturated NaCl solution (20 mL), dried (Na_2SO_4) , filtered $(MgSO_4)$, and concentrated in vacuo to give 419 mg (100%) of a clear liquid. Purification by chromatography on silica gel (60 g) with 10% EtOAc/hexane as the eluant gave 100 mg (23.9%, 20.4% overall from triol 10) of alcohol 11: IR (CHCl₃) 3620 (OH), 3000 (C=CH), 1030 (C-O); NMR (CDCl₃, 80 MHz) δ 0.87 (t, 3, J = 6.4 Hz, CH_3CH_2), 0.95 (s, 3, CH_3), 0.85 (d, 3, J = 8.9 Hz, CH_3CH), 1.55 (brs, 3, $CH_3C=CH$), 3.84 (AB, 2, J = 11.6 Hz, CH₂O), 5.45 (brs, 1, C=CH); mass spectrum, m/z(relative intensity) 236 (M⁺, 12), 205 (100), 107 (90), 55 (84), 43 (77), 41 (82); high-resolution mass spectroscopy (m/z) calcd for C₁₆H₂₈O 236.2140, found 236.2140; 0.0 ppm error.

Further elution of the above chromatography with 30% Et-OAc/hexane afforded 303 mg (72.3%, 57.7% overall from triol 10) of glycol 12: IR (CHCl₃) 3580, 3370 (OH), 3000 (C—CH), 1070, 1035 (C—O) cm⁻¹; NMR (CDCl₃, 80 MHz) δ 0.83 (d, 3, J = 5.7 Hz, CH₃CH), 0.87 (s, 3, CH₃), 1.54 (brs, 3, CH₃C—CH), 3.1–4.1 (m, 5, CH₂OH, CHOH), 5.43 (brs, 1, CH₃C—CH); mass spectrum, m/z (relative intensity) 252 (M⁺, 34), 234 (93), 221 (82), 121 (100), 107 (72), 95 (71), 55 (69), 41 (68); high-resolution mass spectroscopy (m/z) calcd for C₁₆H₂₈O₂ 252.2089, found 252.2086; 1.2 ppm error.

Decahydro-1,4,8a-trimethyl-9-methylene-1,6-methanonaphthalen-7-ol (13). Method A. A mixture of glycol 12 (290 mg, 1.15 mmol), NaIO₄ (1.56 g, 7.20 mmol) in THF (4.0 mL), and H₂O (4.0 mL) was stirred at 23 °C for 13 h. The resulting reaction mixture was diluted with H₂O (40 mL) and extracted with Et₂O (10 × 10 mL). The combined ethereal extracts were washed with saturated NaCl solution (20 mL), dried (Na₂SO₄), filtered (Mg-SO₄), and concentrated in vacuo to give 253 mg (100%) of a clear oil. Distillation (bulb-to-bulb) gave 195 mg (77%) of a 3:1 (GLC, column a) mixture of tricyclic alcohols 13: bp 100-105 °C (1.0 mmHg); GLC (column a, 3:1 ratio at 12.7 and 13.8 min, respectively); IR (CHCl₃) 3600, 3520, 3290 (OH), 1640 nC=CH₂), 1100, 1030 (nC=O), 890 (C=CH₂) cm⁻¹; NMR (CDCl₃, 80 MHz) δ 0.80 (d, 3, J = 7 Hz, CH₃CH), 0.86 (s, 3, CH₃), 1.02 (s, 3, CH₃), 3.25-4.25 (m, 1, CHO), 4.93 (d, 2, J = 5 Hz, C=CH₂); mass spectrum, m/z (relative intensity) 200 (M⁺, 3), 202 (2), 121 (77), 119 (87), 105 (98), 91 (83), 81 (90), 41 (100); high-resolution mass spectroscopy (m/z) calcd for $C_{15}H_{24}O$ 220.1827, found 220.1824; 1.4 ppm error.

Method B. To a solution of ketone 14 (34.2 mg, 0.15 mmol) in reagent MeOH (2.0 mL) stirred at -15 °C (ice–MeOH bath) under N₂ was added powdered NaBH₄ (0.288 g, 7.61 mmol). The resulting mixture was allowed to stir for 30 min at -15 °C and then warmed to room temperature over a period of 1 h. The reaction mixture was diluted with H₂O (15 mL) and extracted with Et₂O (5 × 10 mL). The combined ethereal extracts were washed with H₂O (2 × 10 mL) and saturated NaCl solution (10 mL), dried Na₂SO₄), filtered (MgSO₄), and concentrated in vacuo to give 34.5 mg (100%) of tricyclic alcohols 13, the GLC, TLC, and spectra of which were nearly identical with the above data.

 $(1\alpha, 4\alpha, 4a\beta, 6\alpha, 8a\beta)$ -Octahydro-1,4,8a-trimethyl-9methylene-1,6-methanonaphthalen-7(1H)-one (14). Chromic acid reagent⁹ (2.67 M, 2 drops) was added to a solution of alcohols 13 (14.7 mg, 0.067 mmol) in reagent acetone (0.5 mL) at 23 °C. After being stirred for 5 min, the orange mixture was quenched with *i*-PrOH (3 drops) and H_2O (10 mL). The aqueous solution was extracted with Et_2O (5 × 10 mL). The combined ethereal extracts were washed with saturated NaHCO₃ solution (5 mL) and saturated NaCl solution (5 mL), dried Na_2SO_4), filtered $MgSO_4$), and concentrated in vacuo to give 14.6 mg (100%) of white crystalline tricyclic ketone 14: mp 35.5-36.5 °C; IR (CHCl₃) 3080, 1640, 900 (C=CH₂), 1380, 1370 (CH₃), 1715 (C=O) cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) δ 0.820 (d, 3, J = 6.78 Hz, CH₃CH), 0.952 (s, 3, CH₃), 0.992 (s, 3, CH₃), 1.92, 1.99, 2.35, 2.42 (AB, 2, $J_{AB} = 19.6$ Hz, CH₂CO), 2.91 (t, 1, J = 2.9 Hz, CH₂=CCHCO); 4.84 and 5.02 (2 s, 2, C=CH₂); ¹³C NMR (CDCl₃, 20.2 MHz) ppm 18.90, 19.54, 24.24, 24.51, 25.92, 29.41, 36.74, 38.83 (4°), 39.97 (4°), 43.21, 48.13, 55.95, 110.16 (C=CH₂), 153.38 (C=CH₂), 212.50 (CO); mass spectrum, m/z (relative intensity) 218 (M⁺, 39), 111 (56), 120 (80), 105 (78), 91 (81), 81 (58), 41 (100); high-resolution mass spectroscopy (m/z) calcd for C₁₅H₂₂O 218.1671, found 218.1675; 1.8 ppm error.

 (\pm) -Seychellene (1). A mixture of ketone 14 (67 mg, 0.306 mmol), KOH (535 mg, 8.1 mmol), and N₂H₄·H₂SO₄ (340 mg, 2.61 mmol) was heated slowly under N_2 from 23 °C to 200 °C over a period of 2 h and then held at 200 °C for an additional 2 h. The reaction was cooled to 23 °C, diluted with H₂O (40 mL), and extracted with Et_2O (5 × 10 mL). The combined ethereal extracts were washed with H_2O (5 × 10 mL) and saturated NaCl solution (10 mL), dried Na_2SO_4), filtered (MgSO₄), and concentrated in vacuo to give 55 mg (87%) of a pale yellow oil. Chromatography on silica gel (1 g) using hexane as the eluant produced 46 mg (73%)of pure (±)-seychellene (1): IR (CHCl₃) 3070, 1640, 885 (C=CH₂), 1370, 1380 (CH₃); ¹H NMR (CDCl₃, 300 MHz) δ 0.752 (d, 3, J = 6.77 Hz, CH₃CH), 0.830 (s, 3, CH₃), 0.961 (s, 3, CH₃), 2.20 (m, 1, CH₂=-CCH), 4.59 and 4.79 (2 d, 2, J = 1.4 Hz, C=-CH₂); ¹³C NMR (CDCl₃, 20.2 MHz) 18.75, 20.71, 24.94, 26.44, 26.56, 27.81, 29.90, $31.65, 35.16, (4^{\circ}), 37.26, 37.66, 39.81 (4^{\circ}), 44.77, 103.49 (C=CH_2),$ 162.41 (C=CH₂); mass spectrum, m/z (relative intensity) 204 (M⁺, 12), 189 (5), 122 (100), 93 (33), 41 (27); high-resolution mass spectroscopy (m/z) calcd for C₁₅H₂₄ 204.1878, found 204.1879; 0.5 ppm error.

Acknowledgment. We thank the Robert A. Welch Foundation (Grant No. E-518) for the funds to support this research program. We also thank Professor K. Yamada (Nagoya University) for providing copies of the IR and NMR spectra of tricyclic ketone 14 and synthetic cycloseychellene (2).

Competitive Photochemical $\sigma^2 + \pi^2$ Addition and Electron Transfer in the *N*-Methylphthalimide-Alkene System

Paul H. Mazzocchi,* Saeko Minamikawa, and Paul Wilson

Department of Chemistry, University of Maryland, College Park, Maryland 20742

Received December 11, 1984

N-Methylphthalimide (NMP) undergoes a pair of competing photochemical reactions in the presence of alkenes. In one of these reactions the alkene adds to the C(O)–N bond of NMP in a concerted $\pi^2 + \sigma^2$ process that ultimately leads to 2-benzazepine-1,5-diones (5). A competing electron-transfer process results in the formation of a radical cation-radical anion pair which can be efficiently trapped in alcohol solvents such as 4. The regiochemistry of these products is consistent with expectations for addition of an alcohol to a radical cation. Calculations using the Weller equation accurately predict when electron transfer should dominate the $\pi^2 + \sigma^2$ process, when the $\pi^2 + \sigma^2$ process should dominate the electron-transfer process, and when the two should be directly competitive. Product studies on the formation of 4 and 5 for various alkenes in methanol solution are entirely consistent with this hypothesis.

The photochemistry of phthalimides in the presence of alkenes is characterized by three major processes:¹ (1) The addition of the alkene to the C(O)-N bond resulting in the formation of a ring expanded benzazepinedione² (eq 1).

(1) For reviews see: Mazzocchi, P. H. "Organic Photochemistry"; Padwa, A.; Ed.; Marcel Dekker: New York, 1981; Vol. 5. Kanaoka, Y. Acc. Chem. Res. 1978, 11, 407.

This reaction is regiospecific and stereospecific, and studies indicate that it is a concerted process that probably occurs through the zwitterionic "enolate" of the imide.³ The reaction has some generality in that it occurs with alkenes, dienes, vinyl ethers, vinyl esters, and an allene.^{2d}

^{(2) (}a) Mazzocchi, P. H.; Bowen, M.; Narian, N. J. Am. Chem. Soc.
1977, 99, 7063. (b) Mazzocchi, P. H., Minamikawa, S.; Bowen, M. Heterocycles
1978, 9, 1713. (c) Mazzocchi, P. H.; Minamikawa, S.; Bowen, M. J. Org. Chem. 1978, 43, 3079. (d) Mazzocchi, P. H.; Minamikawa, S.; Wilson, P.; Bowen, M.; Narain, N. *Ibid.* 1981, 46, 4846. (e) Maruyama, K.; Kubo, Y. Chem. Lett. 1978, 769.

^{(3) (}a) Mazzocchi, P. H.; Minamikawa, S.; Wilson, P. J. Org. Chem.
(3) (a) Mazzocchi, P. H.; Minamikawa, S.; Wilson, P. J. Org. Chem.
1979, 44, 1186. (b) Mazzocchi, P. H.; Wilson, P.; Khachik, F.; Klingler, L.; Minamikawa, S. Ibid. 1983, 48, 2981. (c) Mazzocchi, P. H.; Khachik, F.; Wilson, P. J. Am. Chem. Soc. 1981, 103, 6498.